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3.2.2 LINE SEARCH METHODS:
EXTRAS.
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3.2.2.1 LINE SEARCH
METHODS: USING
INTERPOLATION IN LINE
SEARCH



Quadratic Interpolation
& Approximate g(a) with h(0)

h(0)=g(0), h’(0) =g’(0), g(ao)

g(0w)

ol
( g(00)—- g( 0)—0ug' () >
2




Quadratic Interpolation

Potential step o = g (e)aw
2(g(0w)— g(0)-0wg'()

g(0w)

ol



CHICAGO Cubic Interpolation

Cubic Interpolation

h(O) = aots +bat2 +0g'(0)+ g(0)

[a] I [oo—ou2 Yg(ou ) g(0)-g'(0)ou
bl opyon o M —oms o \g(ow)- g(0)- £(0)aw |
—b+ b2 =3ag'(0)
3a

Ol2
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3.2.2.2 LINE SEARCH
METHODS: OTHER LINE
SEARCH PRINCIPLES
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Unconstrained 0ptimi7ati0ﬂ method

w

X =X, T akdk

OCk . Step length dk . Search direction

1) Line search

2) Trust-Region algorithms

Quadratic approximation

Influences



Step length computation:

1) Armijo rule:
f(xk) o f(-xk + ﬁmfkdk) 2 _pﬁmfkvf(xk)T dk
Be(©)  pe0.1/2)

7, =~V () d)/|d,|

2) Goldstein rule:

p105kg/fdk < f(xk T akdk) o f(xk) < p2akggdk

0<p2<%<p1<1
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3) Wolfe conditions:

f(xk T Olkdk)— f(xk) < pakg]f
Vi(x, +ad) d >0g’d
O<p<ox«l

Implementations:

Shanno (1978)

Moré - Thuente (1992-1994)
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3.2.2.3 LINE SEARCH
METHODS: TAXONOMY OF
METHODS



Methods for Unconstrained Optimization

1) Steepest descent (Cauchy, 1847)
d =-Vf(x,)

2) Newton

2 -1
dk ==V f(xk) Vf(xk)
3) Quasi-Newton (Broyden, 1965; and many others)

d =HVf(x,)
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4) Conjugate Gradient Methods (1952)

dk+1 ==& T ﬁkSk

B. Is known as the conjugate gradient parameter

5) Truncated Newton method (Dembo, et al, 1982)

d=-Vf(x)'g Ir|= HW f(x)d, + ng

6) Trust Region methods
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/) Conic model method (Davidon, 1980)

|
q(d)= f(xk)+g£d+5dTBkd

T T
1 a’Ad
c(d X )+ + —
(d)=/( ) 1+ de 2(1+de)

8) Tensorial methods (Schnabel & Frank, 1984)
m (x +d)= f(xc)-I—Vf(xC)-d+%V2f(xc)-d2

ety g
6 ¢ 24 -
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9) Methods based on systems of Differential Equations

Gradient flow Method (Courant; 1942)

=V () 'V ()
x(0)=x,

10) Direct searching methods

Hooke-Jevees (form searching) (1961)

Powell (conjugate directions) (1964)

Rosenbrock (coordinate system rotation)(1960)
Nelder-Mead (rolling the simplex) (1965)

Powell —-UOBYQA (quadratic approximation) (1994-2000)

N. Andrei, Critica Retiunii Algoritmilor de Optimizare fara Restrictii
Editura Academiei Romane, 2008.
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3.3 DEALING WITH
INDEFINITE HESSTANS
MATRICES
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Closest Positive Definite Matrix

* But Hessian is positive definite < 2 ; S,
Al = a;,| =+tr(AA)= O;
|Al|, ZZJ_I‘ | =V \/Zi_l

(maybe) ONLY at solution!!
What do we do?

o Answer: Perturb the matrix. A=A" =|A], = [, ‘a,-j‘z =tr(A”) = \/27@2
+ Frobenius NORM o -

e (losest Positive Definite
Matrix (symmetric A)

0/0,=0;0,=0.A0,|, =|A],

A=0DQ" A =QBO"

B A A =20>0
| & A<S
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Modifying Hessian

Given initial point x;
for k=0,1,2,...

Factorize the matrix By = V? f (xx) + Ex, where E; = 0if V* f (x;)
is sufficiently positive definite; otherwise, E} is chosen to
ensure that By is sufficiently positive definite;

Solve By pr = —V f(xk);

Set x;41 < X + o pr, where o, satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions;

end
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1.Adding Multiple of the Identity

Algorithm 3.3 (Cholesky with Added Multiple of the Identity).
Choose B > 0;
if min,- a; >0
set tp < 0;
else
7o = —min(a;;) + B;
end (if)
fork=0,1,2,...
Attempt to apply the Cholesky algorithm to obtain LLT = A + 7, 1;
if the factorization is completed successfully
stop and return L;
else
Ti41 < max(2, B);
end (if)
end (for)

* (: what may be the downside of the approach?
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2. Moditied Cholesky

for j=1,2,..., n
cjj—a;;— Y- LAl
dj < cjjs
for i=j4+1,..., n

J—1 .
Cij < Qij — ) _i— dslisljs;

end

B d=-Vf(x,) © LDL'd=Vf(x,)

B, :Vixf(xk)+Ek

*Ensuring Quality of the Modified Factorization
(i.e. entries do not blow up by division to smal
| elelments)

*AlM:

dj >4, m;j| <pB, i=j+1,j+2,....n

*Solution: Once a “too small d” is encountered
Replace its value by :

0:\’
d; = max (lcjjl, (Ej) ,8), with 6, = max |c;j|
j<i<n

*Then:

|mlj| = |llj\/d—j| = |Cij| < |c,j|ﬁ < IB, foralli > ]
Jai — 0

* Q: Cholesky does not need pivoting. But
does it make sense here to NOT pivot?
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LDL factorization WITH permutation (why?)

« EXPAND
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3. Modified LDLT (maybe most practical to

implement ?)

* What seems to be a practical perturbation to PD that makes it
have smallest eigenvalue Deltar

* Solution: Keep same L,P, modity only the B!

| will ask you to

PAP! = LBL' code it with
Armijo
F = Qdiag(r;) Q°, 1, = i =1,2,...

8—)\.,', )\.,’<8,

P(A+E)P' = L(B+ F)L', where E = PTLFLTP.
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3.4 QUASI-NEWTON
METHODS

169
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3.4 QUASI-NEWTON
METHODS: ESSENTIALS

170
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Secant Method — Derivation (NLE)

(<),

f(xi) [

Figure 1 Geometrical illustration of
the Newton-Raphson method.

f(x)=0
Newton’ s Method

L Sm)

xi+1 T /
J(x)

Approximate the derivative
f(x,) = Jx)—f(x) (2)

X — X

Substituting Equation (2)
into Equation (1) gives the
Secant method

oy S —x,)

X +1 i
| S = f(xi)
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Secant Method — Derivation

The secant method can also be derived from geometry:
fx)

>

The Geometric Similar Triangles

AB DC
EN ) E— 5 AE _ DE
can be written as
f(xi) _ f(xi—l)
i) c Xi =X Ao T X
an N . On rearr.ang_ing, the secant
Xl X X method is given as
Figure 2 Geometrical representation of Xy =X, — S~ Xi,)

the Secant method. l f(xi) _f(xi—l)

172
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Multidimensional Secant Condtions

Given two points x, and X, , we define (for an optimization problem)
gk - Vf(xk) and gk+1 = Vf(xkﬂ)
Further, let p, = x,,, - X, , then
g1 - g = Hx) py The Secant Condition
If the Hessian is constant, then
2.1 - & =Hp, which can be rewritten as q, = H p,
If the Hessian is constant, then the following condition would hold as well

H' 9 =p; O<i<k

This is called the quasi-Newton condition.

173
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Broyden—Fletcher—Goldfarb—Shanno

Remember that q; = Hy . p; and H-1y 1 q;=p; (or,By,1q;=p;) O0=i=k

Both equations have exactly the same form, except that q; and p; are interchanged and H
is replaced by B (or vice versa).

This leads to the observation that any update formula for B can be transformed into a
corresponding complimentary formula for H by interchanging the roles of B and H and of
q and p. The reverse 1s also true.

BroydenoFletchera€GoldfarbaShanno formula update of Hy is obtained by taking the
complimentary formula of the DFP formula, thus:

qqi T H, p, p TH;
aTpy & P THpy

Hyyp =Hy +

By taking the inverse, the BFGS update formula for By, ; (i.e., H-1, ) is obtained:

1 + q "By qy ) PkPkT  PxadxTBy + ByrqypiT
qx TPk PTq <~ qx TPk

By =By + (

174
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How do BFGS methods work?

LEMMA 8.1.1 Let A e R"™" s,y e R" s # 0. Then for any matrix norms
I-ll, Il - Il such that
|A-B| < | Al"IiBIH (8.1.6)
and
oo’
ol = 1, (8.1.7)
the solution to
min |B—A| (8.1.8)
B e Q(y, 3}
1S
(y — As)s”
A, = A+ T . (8.1.9)
s's
In particular, (8.1.9) solves (8.1.8) when | : || is the !, matrix norm, and
(8.1.9) solves (8.1.8) uniquely when || - || is the Frobenius norm.
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Advantage of quasi-Newton

* Matrix 1s ALWAYS positive definite, so line search works fine.
* It needs ONLY gradient information.

* It behaves *almost* like Newton in the limit (convergence 1s
superlinear).

* Optimality 1s nice, but what you really need is that (1) it needs
only derivatives and (2) it satisfies the secant property and (3) if

the original matrix is PSD so 1s the update. I will ask you to
prove them.

* Inits L-BFGS variant it 1s the workhorse of weather forecast and
operational data assimilation in general (a max likelthood
procedure, really).
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4.1 TRUST REGION
FUNDAMENTALS
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Trust Regtion Idea

e Notations

ff=rxt) V=)

* (Quadratic Model

+ Order of Quadratic Mpdgh A aslopy ok + L 75t
2

f(xk +p)=fk +p'g" +%pTVixf(xk+tp)p t€[0,1]

mk(p)—f(xk+p):<
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Trust Region Subproblem

minpeRn m,(p)

subjectto | p|| < A

1

Called Trust Region
Constraint

e If B“-0andp™=(B) ¢; where Hp*" HSAk then p* is
the solution of the TR subproblem.

* But the interesting case lies in the opposite situation
(since not, why would you need the TR in first
place )?
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Trust Reoton Geometric Intuition

A ... Trust region

Line search direction

contours of m X

Trust region step
contours of f
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min (x2 — 1)2

* Line search started at 0 cannot progtress.

* How about the trust-region?

min,—2d*; |d|<A

 FHither solution will escape the saddle point --
that 1s the principle of trust-region.
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General approach

* How do we solve the TR subproblem?

e It B*»0 (orif we are not obsessed with
stopping at saddle points) we use ~ dogleg”

method. (LS, NLE). Most linear algebra 1s in
computing
Btd Y = _gt
* If fear saddle points, we have to mess around

with eigenvalues and eigenvectors — much

harder problem.
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Trust Region Management: Parameters

* 'The quality of the reduction.

S F 4 pY)

/ Actual Reduction
p =

k
* Define the acceptanc’g’rg%)o M (p ) — Predicted Reduction

* Define the maximum TRqséz%O,l)
4
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TR management

ATV "Te 1 1TUDL RTXIVIT ).
Given A > 0, Ag € (0, A),and n € [0, §):
fork =0,1,2,...
Obtain py by (approximately) solving (4.3);
Evaluate p; from (4.4);

lf,Ok < %
1
| will ask you to Akt1 = 70k
code It with else
dogleg if pr > 7 and || pell = Ay
Agy1 = min(2Ag, A)
else
Apy1 = Aps
if pr > 1

Xk+1 = Xk + Pk
else

Xk+1 = Xk
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What if I cannot solve the TR exactly ?

* Since it is a hard problem.

* Will this destroy the “Global~ convergence behavior?

e Idea: Accepta " sufficient” reduction.

* But, I have no Armijo (or Wolfe, Goldshtein criterion) ...

e Whatdo I do?

* Idea? Solve a simple TR problem that creates the yardstick for
acceptance — the Cauchy point.
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4.2 THE CAUCHY POINT
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The Cauchy Point

* What is an easy model to solve? Linear model
k | kT
L(p)=rf"+g""p

k

* Solve TR linear model } .
pri=argmin s b (p)

* The Cauchy point.

" =arg minTeR ot eat m, (r pk,s)

k

k k__k,s. , k k,
pr=Tpr, x‘=x+p°

* The reduction m©)-m(p"*‘)becomes my yardstick; if trust region has at
least this decrease, I can guarantee " global~ convergence (reduction

1s O(Hngz))
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Cauchy Point Solution

* First, solution of the linear

problem 1s
s Ak k Trust region
Pc="71 8 ;
"]

: _. contours of my

* Then, it immediately follows | ! \,,——&V;;'"‘:.-:;j::_'f.'._ffff_'_’_‘_‘::; ————————
~- e SN e ____- - -

that

1 gZBkgk <0

3
min| — s 1| otherwise
(gk B.g, ) Ay
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Dogleg Methods: Improve CP

* If Cauchy point is on the boundary I have a lot of decrease and 1
. .~ kT k .
accept it (e.gifg ~ B, g <0;)

 If Cauchy point is interior,

gk,TBkgk > 0: pk,c __

 Take now "Newton  step p®=-B;'g" (note, B need not be pd,
all I need is nonsingular).
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Dogleg Method Continued

| will ask you to

de it with TR
* Define dogleg path coae it wi

* The dogleg point:
ﬁ(fD); T, =arg minr;"ﬁ(r)"ﬂk m, (13(1'))
It is obtained by solving 2 quadratics.

* Sufficiently close to the solution it allows me to choose the
Newton step, 7=2 and thus quadratic convergence.
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Dogleoc Method: Theory

“~.. Trust region

Optimal trajectory p(A)

: ; : < pB (full step)
pY( uncdh‘st_r_ained min along —&) TN

....... \\\_g
dogleg path >

Lemma 4.2.
Let B be positive definite. Then

(i) ||p(T)|l is an increasing function of T, and

(ii) m(p(t)) is a decreasing function of T.



Global Convergence of CP Methods

Lemma 4.3.
The Cauchy point p; satisfies (4.20) with ¢, = %, that is,

me(0) — mi(pS) > Lgel min (Ak, 8] ) .

I Bl
| pkll < y Ay, for some constant y > 1. (4.25)
, : 18|
Mmp(0) — mg(pr) = ¢l |l min | Ag, 1Bl ) (4.20)

Theorem 4.5.

Let n = 0 in Algorithm 4.1. Suppose that ||B|| < B for some constant 8, that [ is
bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(Ry) for some Ry > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants ¢, and y. We then have

li;n inf || gx|| = 0. (4.26)
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Numerical comparison between methods

* What is a fair comparison between methods?

* Probably : starting from same point 1) number of function evaluations
and 2) number of linear systems (the rest depends too much on the
hardware and software platform). I will ask you to do this.

* 'Trust region tends to use fewer function evaluations (the modern
preferred metric; ) than line search .

* Also dogleg does not force positive definite matrix, so it has fewer
chances of stopping at a saddle point, (but it is not guaranteed either).
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4.3 GENERAL CASE: SOLVING
THE ACTUAL TR PROBLEM
(DOGLEG DOES NOT QUITE
DO IT)
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Trust Region Equation

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

minm(p) = f + g p+ip"Bp, st pll <A, (4.7)

if and only if p* is feasible and there is a scalar .. > 0 such that the following conditions are
satisfied:

(B+AMI)p* = —g, (4.8a)
AA —=[Ip*Il) = 0, (4.8b)
(B + AI) 1s positive semidefinite. (4.8¢)
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Theory of Trust Region Problem

Global convergence Theorem 4.8.

away from saddle Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
point continuously differentiable in the level set S. Suppose that By = V* f (xy) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then

limy_ oo flg¢ll = 0.
If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point Xy at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {xy} has a limit point x* in S at which the second-order necessary conditions hold.

Theorem 4.9.
Fast Local Let [ be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
Convergence which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {xi}
converges to X* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xy) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps p; whenever || p|l < %Ak,
that is,

Il — pill = o(ll pil)- (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xx} converges superlinearly to x*.
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How do we solve the subproblem?

* Very sophisticated approach based on theorem on structure of
TR solution, eigenvalue analysis and/or an “inner  Newton
iteration.

 Foundation: Find Solution for

p(A) =—(B+Arl)"g

Ip(M)Il = A.
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How do I find such a solution?

B — QAQT A — dlag()\-], )\«2, ¢ o e a)\'n)’

n

pA)=—QA+AD7T"QTg==)"

J=1

q; 8
i+ A

qj,

, by orthonormality of g1, g2, ..., gn

2
L (4s)
Ip()I* = ; Ty
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TR problem has a solution

el

Figure4.5 | p(A)]| asa function of A.

lim |p(A)|=0. ¢fg#0 = lim [p()| =00

A— 00 A——Aj
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Practical INCOMPLETE) algorithm

1 | b (X(E))
()') —_ ’ )“(€+l) — A(f) - =
P =N T ool # (1)

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for¢ =0,1,2,...
Factor B + A9 = RTR;
Solve RTRpg = —g, RTC]e = Pe¢;

Set

LD _ 50 (nmn)2 <||P£|| - A) ,
lgel A

end (for).

It generally gives a machine precision solution in 2-3 iterations
(Cholesky)
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The Hard Case

q,8=0

Il
T
q;8
JAi#EM TV 1
T
— J
--------------------------------------------------------------------- JiAi#EN TV 1
—7L3
k
Figure 4.7) The hard case: ||p(1)|| < A forall X € (=1, 00). ElT Hp(T)H =A

If double root, things continue to be complicated ...
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Summary and Comparisons

* Line search problems have easier subproblems (if we modity

Cholesky).

* But they cannot be guaranteed to converge to a point with
positive semidefinite Hessian.

* Trust-region problems can, at the cost of solving a complicated

subproblem.

* Dogleg methods leave “between’ these two situations.





